Healed Experimental Ischemic Injury of Cat Myocardium
نویسندگان
چکیده
We studied the effects of a membrane-active antiarrhythmic agent, procainamide (PA), on cellular electrophysiological consequences of ischemic injury to cat ventricular muscle. The left ventricles of 90to 120-minute acute myocardial infarctions (AMI) (n = 14), and 2to 4-month healed myocardial infarctions (HMI) (n = 17), were studied by microelectrode techniques in isolated tissue bath. Control action potential duration at 90% repolarization (APD90) recorded from ventricular muscle cells in AMI areas were short (114 ± 4 msec) compared to recordings from cells in normal areas (136 ± 6 msec) (P < 0.001). In contrast, APD90 of cells surviving ischemia in HMI preparations were longer than normals (159 ± 5 vs. 140 ± 5 msec, P < 0.001). After 60 minutes of exposure to PA, the APD90 of all cells was prolonged, but the absolute and relative magnitudes of prolongation were greater in AMI cells (mean = +40 msec, +35%), than in HMI cells (mean = +19 msec, +13%), P < 0.001. The prolongation of APD90 of normal cells was intermediate. Local refractory period changes paralleled APD90 changes. In seven additional HMI preparations, sustained ventricular activity was induced by premature stimulation. APD90 of HMI cells prolonged less than APD90 of normal cells during exposure to PA in these preparations, and decreased differences of APD90 between normal and HMI cells was associated with loss of inducibility of sustained ventricular activity. The effect of tetrodotoxin (TTX) was compared to the effect of PA in four HMI preparations to determine whether impaired delivery of test substances caused only an apparent decreased responsiveness to PA in HMI zones. TTX caused nearly identical prolongations of conduction times in HMI zones and normal zones, whereas PA caused different effects on APD90 in the two zones. In conclusion, PA alters the time course of repolarization of AMI cells more than that of HMI cells, decreasing the dispersion of repolarization in a given AMI or HMI preparation. The decreased dispersion correlated with loss of ability to induce sustained ventricular activity. Finally, the decreased responsiveness of HMI cells to PA does not appear to be due to impaired delivery to cell membranes, but, rather, appears to be a membrane difference persisting in cells which have survived ischemic injury. (Circ Res 50: 386-393, 1982)
منابع مشابه
Protective effect of ischemic postconditioning against ischemia reperfusion-induced myocardium oxidative injury in IR rats.
Brief episodes of myocardial ischemia-reperfusion (IR) employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR)-induced myocardium oxidative injury in rat model. Resu...
متن کاملCombined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium
Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...
متن کاملNitric Oxide is Necessary for Diazoxide Protection Against Ischemic Injury in Skeletal Muscle
Ischemia reperfusion injury (IR injury) is a common problem in clinical conditions. Researches have frequently revealed that ATP- sensitive potassium (KATP) channels and nitric oxide plays a role in protection against ischemic injury in skeletal muscle. The present study aimed at evaluating the possible link between this two pathways. Sixty-eight male wistar rats, were pretreated with saline, d...
متن کاملNitric Oxide is Necessary for Diazoxide Protection Against Ischemic Injury in Skeletal Muscle
Ischemia reperfusion injury (IR injury) is a common problem in clinical conditions. Researches have frequently revealed that ATP- sensitive potassium (KATP) channels and nitric oxide plays a role in protection against ischemic injury in skeletal muscle. The present study aimed at evaluating the possible link between this two pathways. Sixty-eight male wistar rats, were pretreated with saline, d...
متن کاملProanthocyanidin prevents myocardial ischemic injury in adult rats
BACKGROUND Proanthocyanidin is a bioflavonoid known to have protective effect against oxidative injury. We investigated the cardioprotective effect of proanthocyanidin. MATERIAL/METHODS Thirty-two Rattus Norvegicus rats were categorized equally as the control group (CG), proanthocyanidin group (PCG), ischemia group (IG) and proanthocyanidin-treated group (PCT). Rats in CG and IG were fed stan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005